
Lossy Compression for Deep Neural Networks

Shuaiwei Song, Pacific Northwest National Laboratory
Jieyang Chen, University of California, Riverside

1

Deep Neural Networks

Deep Neural Networks (DNNs) has been extensively developed and used
LeNet
AlexNet
GoogleNet
VGG
ResNet

They have becoming more powerful and can handle more complicated tasks
Image classification
Object detection
Etc.

2

Growing number of parameters

More powerful DNNs are made possible by
More parameters
More complicated structures

As more advanced DNNs are developed à DNNs becomes deeper
Lenet-5: 4 layers
Alexnet: 7 layers
VGG-16: 16 layers
ResNet: 18 – 152 layers

3

DNNs storage sizes are growing fast

4

Challenges bring by larger DNNs

5

Limited by the available RAM/storage space and network performance, it
can be hard to:

Transferring DNNs between systems during training.
E.g., coarse tuning on one system and fine tuning on another system.

Publishing pre-trained DNNs on webs.
E.g., ILSVRC winners want to share their novel DNNs.

Deploying DNNs on systems for inference.
E.g., An application that uses pre-trained DNN needs an update from vender.

Loading DNNs on GPUs with small memory
E.g., Sometimes our training/testing platform can be very heterogeneous.

What can users do with large models?

Reduce batch size to make more space for the model. However, it may:
Decrease training speed
Impact accuracy

Distribute on multiple GPUs or nodes
More computing resource requirement
Efficient design can be complicated

6

No perfect choice for users!

Model compression

7

DNNs are over-parameterized [Denil et al. NIPS’13]

7

CNN trained
on STL-10

MLP trained
on MNIST

CNN trained
on CIFAR-10

R-ICA trained on
Hyvarinen’s natural

image dataset

R-ICA trained on
STL-10 trained

1. Original parameters set

2. A few parameters chosen at
random

3. Random set can be used to
predict the remaining parameters

Key Insight: Weights in DNN tend to be
structured and redundant.

Current approaches for compressing model

Matrix decomposition:
Denton et al. NIPS’14, Denil et al. NIPS’13

Network pruning:
Han et al. ICLR’18, Han et al. ICLR’17, Han et al. ICLR’15

Weight quantization:
Yunchao et al. ICLR’15, Han et al. ICLR’16, Courbariaux et al. NIPS’15, Gupta et al.
ICML’15

Etc.

8

Network pruning [Han et al. ICLR’15]

1. Run normal network training
• Find out which connections are important

2. Prune the small-weight connections
• L1/L2 regularization

3. Retrain the network on remaining sparse connections
• Dropout to prevent overfitting

9

Iterative pruning
to minimize
connections

Store sparse
weights in

CSR/CSC format

10

Using K-means

Compress rate =
n = num. of weights (16)
b = num. of bit for original data (32)
k = num. of clusters (4)

= 3.2

Using centroids to
approx. weights

Weight Quantization - Weight Sharing [Han et al. ICLR’16]

Error-bounded Compression for DNN

Error-bounded compression can be viewed as generalized approach
compared with pruning and quantization.

Pruning is a compression technique with error bound fixed at 100%.
Quantization is a compression technique with limited but uncontrollable
error bound.

SZ-2.0*: error-bound controlled lossy compressor
Based on multi-dimensional fitting
Error-bounded quantization techniques
Linear regression

11
* SZ 2.0: https://github.com/disheng222/SZ

Error-bounded Compression for DNN

Error-bounded compression is adjustable and controllable.
Compression strength is adjustable through compression parameters.
E.g.: Applying different compression configurations (~6500) on AlexNet (tested on ILSVRC’12)

Error-bounded compression shows promising performance.
Better compression rate.
Comparable accuracy loss.

12

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

1 3 5 7 9 11 13 15 17 19

To
p

1 E
rr

or
 R

at
e

Compression Rate

Our appraoch
Pruning
Quantization

Quantization Pruning

Self-adaptive Compression for DNN

As DNNs becoming deeper (e.g., ResNet-152) much more compression
configurations need to be searched to find the best one.
Compression configurations can grow exponentially as DNN grow:

Lenet-5 (~6.5K)
Alexnet (~4.7M)
VGG-16 (~1.8*1015)
ResNet-152 (~1.1*10145)

Impractical to apply brute force search or search by hand.

Self-adaptive Compression for DNN

We propose self-adaptive compression for DNN
Compression parameters (R) : Hyper-parameter à Learnable parameter
Learn compression parameters as if they are network parameters.

14

= Floss(W) + ! ∗ #$%&'())(*)+,((./)……

Add compression layer
(compress first, then decompress)

Froward propagation:
Evaluate accuracy loss and
size of network after
applying compression.

Back propagation:
Adjust compression
parameters based on
accuracy loss and size of
network

12 12′.(4,12)

2

1 Pushes R à weaker compression

2 Pushes R à stronger compression

64
6Floss

64
6CS1

For each layer:

Derive based on Floss

Derive based on CS

Update R = R – lr * (+)

1

2

1 2

Customized SGD:

Self-adaptive Compression for DNN

We propose self-adaptive compression for DNN
Compression parameters (R) : Hyper-parameter à Learnable parameter
Learn compression parameters as if they are network parameters.

-35.00%

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Ac
cu

ra
cy

 Lo
ss

Compression Rate

error1 error5

Trade-off between accuracy loss and compression rate

Adaptive compression result
will be one of those points

Thanks!

Questions?

16

